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LETTER TO THE EDITOR 

The Liouville theory in the degenerate representation of the 
Virasoro algebra 

Toshiya Kawai and Kengo Yamagishi 
Institute of Physics, University of Tokyo-Komaba, Megro-ku, Tokyo 153, Japan 

Received 16 November 1984 

Abstract. An attempt is made to extend the results of Gervais and Neveu to the degenerate 
representation at an arbitrary level N of the Virasoro algebra in the Liouville theory. As 
an application, the Liouville string theory (in D spacetime dimensions) is considered. The 
tachyonic states appear under the consistency condition of the theory: D s I .  

Since the new formulation of the string theory initiated by Polyakov (1981), various 
analyses have been carried out based on the (quantum) Liouville theory in I +  1 
spacetime dimensions (Curtright and Thorn 1982, Braaten et a1 1982, 1983, 1984, 
Gervais and Neveu 1982a, b, 1983). Recently, some exact results have been obtained 
by Gervais and Neveu (1984a, b) for Green functions of the Liouville field e' (a kind 
of vertex operator) by solving the linear second-order differential equations. The 
analysis has been carried out based on the conformal symmetry which is produced by 
an infinite number of generators L, ( n  E E) satisfying the Virasoro algebra with a 
central charge at the classical level. From the algebraic point of view, the previous 
results (Gervais and Neveu 1984a, b) will be explained as being a specific realisation 
of this infinite algebra. The central charge is usually considered as the obstruction for 
this in the Hilbert space. However, this can be circumvented by demanding the 
conditions L,lphys) = 0 ( n  > 0). The central charge is no problem in this case. 

However, many questions and problems remain unanswered in their approach: is 
the solution unique? What is the meaning of their constraint equation 2f177~ - 77 + 1 = O ?  
Is it possible by choosing other solutions to make the dimensions (= D )  greater than 
one for the embedding spacetime of the string? 

In this letter we attempt to extend their formalism, referring to the conformal 
bootstrap machinery developed recently by Belavin et a1 (1984a, b), Friedan et a1 
(1984), Dotsenko (1984) and Dotsenko and Fateev (1984). In the language of the 
latter program the analysis of Gervais and Neveu (1984a, b) is restricted to the 
conformally covariant operator degenerate at level two. Here, we proceed further and 
derive explicitly the linear differential equation for Green functions including level- 
three operators. The connection with the Kac formula (Kac 1979, 1982, Feigin and 
Fuks 1982, 1983) for the anomalous dimension is noted. A brief analysis is also carried 
out for the application of the results obtained here to the Liouville string theory for 
the degenerate representation at an arbitrary level N. Tachyonic states appear under 
the consistency condition of the theory. The notation is the same as in Gervais and 
Neveu (1984a, b). 
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Let us start by considering the Virasoro algebra 

[ L  L I = ( n - m ) ~ n +  + [n 3/ 4h + A( n - n ) I ~ n + m ,  ( 1 )  

where the operator L, is defined by 

with the commutation relation 

[ P n ,  ~ m l =  n h S n + m .  (3) 

According to Gervais and Neveu (1984a, b), the algebraic system (1)-(3) is connected 
to the quantum Liouville theory by the following correspondence. The Liouville theory 
defined by the Lagrangian 

2 = ( I /  167&)[$(a(p)2 - e'] (4) 

has conformal symmetry. Its generator is given as usual by the conformally improved 
energy-momentum tensor e"' ( p  = 0 , l ) .  Because of the geometric origin of (4) this 
quantity can be rewritten by the Schwarzian derivativet (Flanders 1971, Hille 1976) as 

Om= -2h-'({A,  a}+{& U}), 

@"=-2h- ' ( {A,  u}-{B, a}). 

Here A and B are dynamical variables introduced by 

P ( T ,  a) = 1n[-8A,Bu/(A - B)'] (7) 

instead of (~(7, a). The advantage of making use of these new variables is that the 
mode expansion becomes simpler compared with the original nonlinear field cp( T, U). 

Defining 

(8) Q =  -I zau B, , p= -L 

and expanding ( 8 )  as 

za, In A,  

m m 

P s  C pn exp(-ina), Q G  2 qn exp(-ina) (9 ) 
n=-m n=--00 

Gervais and Neveu have derived the previous algebras by the correspondence$ 

Om* 0'' = 16 2 L'," exp(-incr). 
n 

In terms of the new variables (8) and (9), the conformal covariant Liouville operator 
e-Q/z has been decomposed into more elementary ones 

i(+zx1- J l l X Z ) ,  
e-P/2 = 

where +i, xi take the form similar to the vertex operator 

t The Scwarzian is defined as 

{A(z ) ,  z)-a,(A,, IA,)  - (A , , /Az )2 /2 ,  

where A, means a,A. 
$ In equations ( l ) - ( 3 ) ,  superscripts (*) are suppressed for brevity. LF 

(11) 

Schwarz 1973, Scherk 1975) 

and LL-' commute with each other. 
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in the dual model as 

$,(a) = exp(-ihg2u/2) exp(xor)) exp(poqa):exp ir) c 
$ 2 ( a )  = $:(a), 

exp(-ima) :, 

(12) 
( m # o m  ) 

1x0, Pol = ih 

and satisfy 7 the conformal covariance relation 

[L,, t,hi(a)] = -i exp( ina)(a /aa+in6) l i (a) .  (13) 

The conformal weight 6 equals -( r) + h ~ ~ ) / 2 .  The most interesting observation made 
by Gervais and Neveu is that the quantities Gi satisfy the closed triangular algebraic 
relation$, provided the constraint equation 

2h7-/2-r)+1 = o  (14) 

is satisfied. 
Let us first consider the meaning of equation (14), which remains obscure in Gervais 

and Neveu (1984a, b). A straightforward calculation leads to the following linear 
differential equation 

(ac+fihT2)2(ufltjI(u) -2h772(0fl~I(a)  C exp(-ima)L, 1 ( m a 0  

= -ir)(2hr)2- r)+ l ~ ( u ~ + ~ ( a ) (  m a 0  c exp(-ima)mp, ) . 0 5 )  

Here (U,-/ is the final state satisfying the following conditions 

L~IUJ = - ( w : / 4 w i u f ) ,  L , l W f )  = 0 ( n  > 0). (16) 
The vanishing of the RHS of (15) ensures the closure of the differential equation for 
arbitrary correlation functions with the help of the physical state conditions 

L,lphys) = 0 ( n  > 0). (17) 
The second-order differential equation (15)  reminds us of the fact that correlation 
functions, including conformal operators degenerate at the second level, obey a similar 
rule in the conformal bootstrap program for the statistical system in two dimensions 
at the critical point (Belavin etal 1984a, b, Dotsenko 1984, Dotsenko and Fateev 1984). 
Representing the conformal weight S in terms of the central charge &C =&+(4h)-’, 
we can show that equation (14) is exactly the condition that fixes the level of the 
operator li(xi) to two, namely, 

6={5-C*[(C-l)(C-25)]”2}/16=A2, ,  o ~ A , , ~ ,  (18) 

A ~ , , = { ( ~ ~ - C ) ( ~ * + S ~ ) * ( ~ ~ - S * ) [ ( C -  1)(C -25)]”2-24k~-2+2C}/48. (19) 

where A,, is the Kac formula (Kac 1979, 1982, Feigin and Fuks 1982, 1983) defined by 

For an arbitrary 6 = A,, (level N = k), on the other hand, the corresponding constraint 
equation (like (14)) is expected to be 

2 h ~ ~  - ( k +  s - 2 ) ~  + ( k  - s)’+ ( k  - l ) ( ~  - 1)/2h =O. (20) 

t xi’s are given by the same form with p .  replaced by qn The c-number 1) is determined below. 
$ See Gervais and Neveu (1984a) for its explicit form. 
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Indeed, we can confirm these correspondences at level three by further differentiating 
equation ( 1  5 ) .  The result becomes 

From (20) we can recognise immediately that vanishing of the RHS of equation (21) 
occurs for values of 77 such that the level of + I  equals three (or needless to say, two 
or one). This is precisely the rule for the correlation function including level-three 
operators. (Generally, the Nth-order linear differential equation for the operators 
degenerate at level N (Belavin et a1 1984a, b).) We reasonably anticipate that these 
correspondences remain true to an operator of arbitrary level by the repeated diff erenti- 
ation of the equation (21). 

Here some comments are in order. 
(1 )  In the RHS of equation (21) (and (15)), there appears the Kac determinant at 

the third (second) level. We may conjecture that explicit use of the vertex operator 
induces the Kac determinant in the course of deriving the closed-form differential 
equation for correlation functionst. (Needless to say, equation (15) ((21)) (setting the 
RHS to zero) is precisely the condition that the representation be degenerate at level 
two (three), i.e., w = 0 where w is the singular vector at level two (three) in the Verma 
module over the Virasoro algebra (Feigin and Fuks 1982, 1983).) 

(2) We may reverse the arguments and expect the results obtained here from the 
beginning, since the conformal bootstrap machinery for the statistical system can be 
applied to the present problem with a slight modification. According to Dotsenko and 
Fateev ( 1984), the correlation functions of the degenerate conformal theory are rep- 
resented by the integrals of average over the vertex operators$ V, = :exp(iacp(z)): in a 
Coulomb-like system with a fixed charge -2ao placed at infinity. The corresponding 
energy-momentum tensor is 

(22) ~ ( z )  = -$a,cpd,cp: +iaoa,cp. 2 

Comparing (21) with (2), we find that they are essentially the same except that (2) 
corresponds to an imaginary ao(h-l - -ai). (In fact, from the purely algebraic point 
of view, we may take any complex number of ao, accordingly C, AkS E C as far as 
deciding a special degenerate representation for the conformal algebra.) Therefore, 
we could employ the techniques of Belavin et a1 (1984a, b) and Dotsenko (1984) to 
derive equation (15) ((21)) (with the RHS setting to zero). 

(3) Because of the imaginary a. the central charge C and the conformal dimen- 
sion A,, take the value C > 25 and Aks < 0. This is to be contrasted with the cases in 
the conformal statistical systems where 0 < C < 1 and Ak, > 0, determined from the 
physical requirement. 
t After finishing the main part of this work we have learned that Thorn (1984) has succeeded in rederiving 
the Kac determinant completely using the vertex operators in somewhat different manner. 
$ The difference in the quantisation schemes is not essential. 
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(4) Following the general rule in the degenerate representation, the eigenvalue of 
Lo for the state Iwf) in (16) should be taken to bet  

A,, - (8h) - ’ ,  (23) 

since loi) ( ( w d )  corresponds to the highest weight state C#J(O)lO) ((OIC#J(m)) in the confor- 
mal bootstrap approach. 

( 5 )  Belavin et a1 (1984a, b) have noted that for a (finite) conformal transformation 
z c* w (  z), the energy-momentum tensor T(  z) of the general conformal theory transforms 
as 

T(z) = T(w)(dw/dz)’+ C{W,  z}/12, (24) 

which is tantamount to the Virasoro algebra. The Schwarzian derivative {w ,  z} has 
many interesting properties (see e.g. Flanders 1971, Hille 1976) among which are 

{ w, z} = o e .  w = (a2 + b ) / (  cz + d ) ,  ad - bc # 0, (25a) 

{ w ,  z}=-{z, w}(dW/dz)’ (25b) 

{ w ,  z} = { w ,  5}(d5/dz)2+{5, z}. (25c) 

Equation (25a) implies that T(z) transforms like a tensor (density) for projective 
transformations (or the vanishing of the central term for the Virasoro algebra). 
Equations (25b, c )  ensure that T(z) behaves consistently under the inversion and 
composition of conformal transformations. In addition, equations (24) and (25c) tell 
us that we have a central charge in the Virasoro algebra at the classical level provided 
that the (classical) energy-momentum tensor is equal (up to a multiplicative constant) 
to a Schwarzian derivative as in the present problem$. 

Finally we consider the physical consequences of the operators of higher level in 
connection with the string theory. The relation between the dimension D of the 
embedding spacetime of a string and the constant h is independent of the 7 variable, 
and is given by 

25-D=3/h .  (26) 

The condition 0 < h S b, ensuring the reality of 7, is satisfied if D d 1 as before. 

mode (Gervais and Neveu 1984a, b) is 
The mass of the lightest scalar particle from the ordinary vertex with Liouville 

M 2  = -(YO - w2/4&. (27) 

Here cyyg is the intercept corresponding to the ordinary string mode, while -wf/4& is 
the eigenvalue of Lo for the initial state of the Liouville theory. They are given by 

(YO = 1 - (8h)-’ (28) 
and equation (23), respectively. In the naive application of the preceding result (23) 
the condition for the no tachyonic state M 2  2 0 is never saturated for an arbitrary set 
of (k, s). This corresponds to the unitarity problem ( C  > 25, Ass < 0) mentioned before, 
and will need further consideration. 

t This may give rise to problems for unitarity. 
$If  the central term in (24) is of purely quantum origin and the classical energy-momentum tensor transforms 
as T(z) = T(w)(dw/dr)2, in view of equation (25c )  the quantum corrections to the energy-momentum 
tensor might be of the form CIF, z}/12 where F is an analytic function of z. 
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From these consequences we may conclude that the consistent application of the 
degenerate representation to the Liouville theory yields a solution for the exact Green 
function, although some problems remain open concerning unitarity. 

We are grateful to Professors Y Fuj i  and T Eguchi for their helpful discussions. This 
work is supported in part by the Japan Society for the Promotion of Science. 

Note. After the completion of this paper, we received a preprint by Gervais and Neveu (1984~) in which 
related subjects are studied. 
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